Il mio Profilo
Rossella Bartolo
Ricercatore
MAT/05 ANALISI MATEMATICA

Home

Formazione: Laurea con lode in Matematica presso l'Università di Bari, tesi: Metodi variazionali nello studio di traiettorie periodiche su varietà Lorentziane, relatore Prof. Donato Fortunato, Marzo 1994; Ph.D. cum laude presso l'Università di Granada (Spagna). Tesi: Critical curves on Riemannian and Lorentzian manifolds with boundary, supervisori Prof. D. Fortunato e Prof. M. Sànchez, Giugno 2000.

Posizioni accademiche: Borsa di studio dell'Istituto Nazionale di Alta Matematica (INDAM) (1995); borsa di studio “Mino Bontempelli 1996”, Accademia Nazionale dei Lincei sotto la supervisione del Prof. D. Fortunato (1996); borsa di studio dell'Università di Bari presso il Dipartimento di Geometria e Topologia dell'Università di Granada sotto la supervisione del Prof. A. Romero e del Prof. M. Sànchez (1997), borsa di studio C.N.R. presso il Dipartimento di Geometria e Topologia dell'Università di Granada sotto la supervisione del Prof. A. Romero e del Prof. M. Sànchez, (1998).

Da Aprile 1999 ricercatore di Analisi Matematica presso il Politecnico di Bari.

Premi: Premio Extraordinario de Doctorado 2000, Università di Granada (Spagna).

Interessi di ricerca: Metodi variazionali e topologici nello studio di equazioni differenziali su varietà con applicazioni a varietà di Riemann, Finsler e Lorentz. Metodi perturbativi nello studio di PDE semilineari e quasilineari.

Affiliazioni accademiche: UMI (Unione Matematica Italiana). GNAMPA (Italian National Group for Mathematical Analysis and Probability and their Applications).

Altre attività: Reviewer per Mathematical Review of AMS.

...
+39 080 596 3747
+39 080 596 3358
Sezione Matematica
Via Orabona 4

Pubblicazioni

Il seguente elenco è solo una parte della Produzione scientifica del docente.
Per maggiori informazioni consultare il Catalogo Istituzionale dei prodotti della Ricerca (IRIS) .


  1. Bartolo R and Fiscella A. Multiple solutions for a class of Schroedinger equations involving the fractional p–Laplacian. MINIMAX THEORY AND ITS APPLICATIONS, 9999. BibTeX

    @article{ 11589_3179,
    	author = "Bartolo R and Fiscella A",
    	title = "Multiple solutions for a class of Schroedinger equations involving the fractional p–Laplacian",
    	year = 9999,
    	journal = "MINIMAX THEORY AND ITS APPLICATIONS"
    }
    
  2. Bartolo R, Candela AM and Flores JL. Connection by geodesics on globally hyperbolic spacetimes with a lightlike Killing vector field. REVISTA MATEMATICA IBEROAMERICANA, 9999. BibTeX

    @article{ 11589_6688,
    	author = "Bartolo R and Candela AM and Flores JL",
    	title = "Connection by geodesics on globally hyperbolic spacetimes with a lightlike Killing vector field",
    	year = 9999,
    	journal = "REVISTA MATEMATICA IBEROAMERICANA",
    	abstract = "Given a globally hyperbolic spacetime endowed with a complete lightlike Killing vector field and a complete Cauchy hypersurface, we characterize the points which can be connected by geodesics. A straightforward consequence is the geodesic connectedness of globally hyperbolic generalized plane waves with a complete Cauchy hypersurface.",
    	keywords = "Lightlike vector field, global hyperbolicity, geodesic connectedness, Killing vector field, Cauchy hypersurface, stationary spacetime, gravitational wave, generalized plane wave."
    }
    
  3. Bartolo R, Candela AM and Salvatore A. Multiplicity results for a class of asymptotically p-linear equations on R^N. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS 18, 2016. DOI BibTeX

    @article{ 11589_6692,
    	author = "Bartolo R and Candela AM and Salvatore A",
    	title = "Multiplicity results for a class of asymptotically p-linear equations on R^N",
    	year = 2016,
    	journal = "COMMUNICATIONS IN CONTEMPORARY MATHEMATICS",
    	volume = 18,
    	abstract = "The aim of this paper is investigating the multiplicity of weak solutions of the quasilinear elliptic equation \[ -\Delta_p u + V(x)|u|^{p-2}u\ =\ g(x, u), \quad x \in\R^N, \] where $1
  4. Bartolo R., Candela A.M. and Salvatore A.. On a class of superlinear (p,q)-Laplacian type equations on R^N. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 438, 2016. BibTeX

    @article{ 11589_60330,
    	author = "Bartolo R. and Candela A.M. and Salvatore A.",
    	title = "On a class of superlinear (p,q)-Laplacian type equations on R^N",
    	year = 2016,
    	journal = "JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS",
    	volume = 438
    }
    
  5. Bartolo R, De Nàpoli P and Salvatore A. Infinitely many solutions for non–local problems with broken symmetry. ADVANCES IN NONLINEAR ANALYSIS, 2016. DOI BibTeX

    @article{ 11589_81864,
    	author = "Bartolo R and De Nàpoli P and Salvatore A",
    	title = "Infinitely many solutions for non--local problems with broken symmetry",
    	year = 2016,
    	journal = "ADVANCES IN NONLINEAR ANALYSIS",
    	doi = "10.1515/anona-2016-0106"
    }
    
  6. Bartolo R and Molica Bisci G. Asymptotically linear fractional p-Laplacian equations. ANNALI DI MATEMATICA PURA ED APPLICATA, 2016. DOI BibTeX

    @article{ 11589_81863,
    	author = "Bartolo R and Molica Bisci G",
    	title = "Asymptotically linear fractional p-Laplacian equations",
    	year = 2016,
    	journal = "ANNALI DI MATEMATICA PURA ED APPLICATA",
    	doi = "10.1007/s10231-016-0579-2"
    }
    
  7. Bartolo R and Molica G Bisci. A pseudo–index approach to fractional equations. EXPOSITIONES MATHEMATICAE 33:502–516, 2015. DOI BibTeX

    @article{ 11589_8119,
    	author = "Bartolo R and G Molica Bisci",
    	title = "A pseudo--index approach to fractional equations",
    	year = 2015,
    	journal = "EXPOSITIONES MATHEMATICAE",
    	volume = 33,
    	abstract = "The aim of this paper is investigating the existence of weak solutions to non--local equations involving a general integro--differential operator of fractional type, when the nonlinearity is subcritical and asymptotically linear at infinity. These equations admit a variational structure and, in presence of an odd symmetric nonlinearity, we prove multiplicity results by using a pseudo--index theory related to the genus. As a particular case we derive existence and multiplicity results for non--local equations involving the fractional Laplacian operator.",
    	keywords = "Fractional Laplacian; integro–differential operator; variational methods",
    	doi = "doi:10.1016/j.exmath.2014.12.001",
    	pages = "502--516"
    }
    
  8. Bartolo R, A M Candela and A Salvatore. Infinitely many solutions for a perturbed Schroedinger equation. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS Suppl.:94–102, 2015. DOI BibTeX

    @article{ 11589_6925,
    	author = "Bartolo R and A M Candela and A Salvatore",
    	title = "Infinitely many solutions for a perturbed Schroedinger equation",
    	year = 2015,
    	journal = "DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS",
    	volume = "Suppl.",
    	doi = "doi:10.3934/proc.2015.0094",
    	pages = "94--102"
    }
    
  9. Bartolo R, A M Candela and J L Flores. CONNECTION BY GEODESICS ON OPEN SUBSETS OF GLOBALLY HYPERBOLIC SPACETIMES. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS 12, 2015. DOI BibTeX

    @article{ 11589_6063,
    	author = "Bartolo R and A M Candela and J L Flores",
    	title = "CONNECTION BY GEODESICS ON OPEN SUBSETS OF GLOBALLY HYPERBOLIC SPACETIMES",
    	year = 2015,
    	journal = "INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS",
    	volume = 12,
    	doi = "DOI: 10.1142/S0219887815600099"
    }
    
  10. Bartolo R. Multiplicity results for a class of quasilinear elliptic problems. MEDITERRANEAN JOURNAL OF MATHEMATICS 11:1099–1113, 2014. DOI BibTeX

    @article{ 11589_6834,
    	author = "Bartolo R",
    	title = "Multiplicity results for a class of quasilinear elliptic problems",
    	year = 2014,
    	journal = "MEDITERRANEAN JOURNAL OF MATHEMATICS",
    	volume = 11,
    	abstract = "By using variational methods we prove the multiplicity of weak solutions of a class of asymptotically p-linear problems.",
    	keywords = "Quasilinear elliptic equations; asymptotically p-linear problem; variational methods",
    	doi = "DOI 10.1007/s00009-013-0378-6",
    	pages = "1099--1113"
    }
    
  11. Bartolo Rossella, Capozzi Alberto, Cerami Giovanna, Cingolani Silvia, D’Avenia Pietro, Greco Carlo, Palagachev Dian, Pomponio Alessio and Vannella Giuseppina. Variational methods in the study of nonlinear problems and applications. In I gruppi di ricerca sfide tecnologiche e sociali B. 2014, 179–183. BibTeX

    @conference{ 11589_60293,
    	author = "Bartolo Rossella and Capozzi Alberto and Cerami Giovanna and Cingolani Silvia and D’Avenia Pietro and Greco Carlo and Palagachev Dian and Pomponio Alessio and Vannella Giuseppina",
    	title = "Variational methods in the study of nonlinear problems and applications",
    	year = 2014,
    	publisher = "Gangemi Editore spa",
    	address = "Roma",
    	volume = "B",
    	booktitle = "I gruppi di ricerca sfide tecnologiche e sociali",
    	abstract = "In this paper we illustrate the lineguides of our research group. We describe some recent results concerning the study of some nonlinear differential equations and systems having a variational nature and arising from physics, geometry and applied sciences. In particular we report existence, multiplicity and regularity results for the solutions of these nonlinear problems. We point out that, in treating the above problems, the used methods for finding solutions are variational and topological, indeed the existence of solutions of the considered equations is obtained searching for critical points of suitable functionals defined on manifolds embedded into infinite dimensional functional spaces, while the regularity of the solutions is studied by means of geometric and harmonic analysis tools.",
    	keywords = "Nonlinear Partial Differential Equations, Solutions, Existence, Multiplicity, Regularity",
    	pages = "179--183"
    }
    

 

Attività Didattiche


Per maggiori informazioni consultare il sito di Ateneo e il portale della Didattica .

Attività di Ricerca

PE1 Mathematical foundations: all areas of mathematics, pure and applied, plus mathematical foundations of computer science, mathematical physics and statistics
PE1_8 Analysis
PE1_11 Theoretical aspects of partial differential equations

Metodi variazionali e topologici nello studio di equazioni differenziali su varietà con applicazioni a varietà di Riemann, Finsler e Lorentz.

Metodi perturbativi nello studio di PDE semilineari e quasilineari.

Contatti

DIPARTIMENTO DI
MECCANICA, MATEMATICA E MANAGEMENT

Viale Japigia 182 - 70126 Bari

  +39 080 596 2752
  +39 080 596 2741
  PECQuesto indirizzo email è protetto dagli spambots. È necessario abilitare JavaScript per vederlo.
Politecnico di Bari
Catalogo dei prodotti della Ricerca
Poliba Web mail